“2024 Surpasses 2023’s Record Heat, Exceeding 1.5°C Global Warming Threshold”
![](https://hotaaj.com/wp-content/uploads/2025/01/Untitled-184.png)
Earth’s Hottest Year Ever: 2024 Surpasses Major Climate Threshold
According to a report by Associated Press on Friday, 2024 has officially become the hottest year on record, surpassing previous temperature highs. Citing data from various weather monitoring agencies, the report revealed that this year saw a significant rise in global temperatures, breaking records set in 2023.
The year’s extreme heat has raised alarm among climate scientists, as global temperatures have now exceeded the critical 1.5°C warming limit set by the Paris Agreement. This marks a major milestone in the ongoing climate crisis, emphasizing the urgency of addressing greenhouse gas emissions to prevent further catastrophic effects.
The rise in temperature has led to widespread consequences, including more frequent and intense heatwaves, devastating wildfires, and shifts in global weather patterns. The increase in global average temperature has also been linked to melting ice caps, rising sea levels, and disruptions to ecosystems and biodiversity.
Experts warn that the breach of the 1.5°C threshold is a clear sign of accelerating global warming, with far-reaching implications for the planet’s future. Governments and environmental organizations worldwide are calling for stronger action to combat climate change, reduce emissions, and transition to sustainable energy sources.
The year 2024 serves as a stark reminder of the pressing need for global cooperation to mitigate the impact of climate change and secure a sustainable future for the planet.
2024’s Record Heat Linked to Devastating Wildfires and Extreme Weather
In the wake of 2024 becoming the hottest year on record, the global climate crisis has taken a deadly toll, with extreme weather events wreaking havoc across the world. Among the most devastating incidents are the catastrophic wildfires that have ravaged California, including areas around Las Vegas, which is famously home to America’s film industry, ‘Hollywood.’
The rising temperatures have fueled a dangerous shift in global weather patterns, resulting in more frequent and severe natural disasters. Wildfires in California, exacerbated by heatwaves, have claimed lives, destroyed homes, and caused widespread devastation. Experts warn that this is just the beginning of a much larger issue.
Marshall Shepherd, a meteorology professor at the University of Georgia, described the ongoing climate changes as a “warning light going off on the Earth’s dashboard.” He emphasized the need for immediate action, stating, “Hurricane Helene, floods in Spain, and the weather whiplash fueling wildfires in California are symptoms of this unfortunate climate gear shift. We still have a few gears to go.”
The report underscores the alarming reality of a world moving closer to irreversible damage, as extreme weather events like Hurricane Helene and floods in Spain have become more frequent and intense. These events are clear signs of the accelerating climate crisis, urging urgent attention and coordinated global action to prevent further devastation. The shift in weather patterns is a stark reminder of the dangers of continued global warming and the need for sustained efforts to mitigate climate change.
2024, Earth’s hottest year on record
2024 Breaks Record Heat, Exceeds 1.5°C Global Warming Threshold
According to reports from the European Commission’s Copernicus Climate Service, the United Kingdom’s Meteorology Office, and Japan’s weather agency, 2024 has shattered previous temperature records, surpassing the global average temperature set in 2023. This year’s heat surge pushed temperatures beyond the long-standing 1.5°C (2.7°F) warming threshold above pre-industrial levels, a key limit established by the 2015 Paris climate agreement.
This unprecedented rise in global temperatures marks a critical milestone in the climate crisis, signaling that the world has now entered a dangerous phase of warming. The breach of the 1.5°C threshold highlights the urgent need for swift action to mitigate climate change and curb greenhouse gas emissions.
Scientists have long warned that exceeding the 1.5°C limit would lead to severe consequences, including more extreme weather events, rising sea levels, and widespread disruptions to ecosystems. With temperatures continuing to climb, experts are emphasizing the necessity of global cooperation to avoid the most catastrophic impacts of climate change.
2024 Temperature Surge: Global Warming Reaches Unprecedented Levels
As 2024 continues to set alarming records, global temperatures have soared beyond what modern humans have ever experienced, according to data released by weather monitoring agencies. The European Commission’s Copernicus Climate Service reported a rise of 1.6°C (2.89°F), while Japan’s weather agency recorded 1.57°C (2.83°F), and the UK’s Meteorology Office found 1.53°C (2.75°F) of warming compared to pre-industrial levels. These figures, released early Friday morning European time, represent a stark reality of the escalating climate crisis.
The EU agency described the temperature surge as “beyond what modern humans have ever experienced,” underscoring the gravity of the situation. The rise in global temperatures far surpasses historical trends and indicates that the climate has shifted into a new and dangerous phase. These record-breaking temperatures are directly linked to the intensification of extreme weather events, such as heatwaves, wildfires, and severe storms, which have already begun to cause widespread devastation across the globe.
Experts are raising urgent calls for global action to curb emissions, shift to sustainable energy sources, and prevent further environmental damage. The breach of the 1.5°C threshold signifies a critical tipping point in the fight against climate change, one that requires immediate and coordinated efforts from governments, industries, and individuals worldwide.
2024 Temperature Surge Nears Critical Climate Threshold as Wildfires Devastate California
While 2024 has seen global temperatures soar, surpassing previous records, experts are cautioning that the internationally agreed 1.5°C warming threshold has not yet been permanently breached. According to the Copernicus Climate Change Service, the world is dangerously close to this critical limit, highlighting the urgent need for action to address climate change before it becomes irreversible.
As temperatures rise, the effects of climate change are becoming more apparent, particularly in regions like California, where deadly wildfires have raged across the state. Los Angeles is grappling with fires that have destroyed thousands of buildings and forced tens of thousands of people to evacuate. US President Joe Biden called the fires the most “devastating” to hit California, emphasizing that the scale of destruction is clear evidence that “climate change is real.”
The ongoing wildfires, exacerbated by record temperatures and extreme heatwaves, serve as a stark reminder of the consequences of unchecked global warming. With the climate crisis intensifying, leaders and experts are urging immediate action to curb emissions and mitigate future disaster risks. The near breach of the 1.5°C threshold signals that the window for effective climate action is rapidly closing.
Unprecedented Warming Pushes Global Temperatures Beyond 1.5°C Limit
The Copernicus Climate Change Service has reported that global temperatures in 2023 and 2024 have exceeded pre-industrial levels by more than 1.5°C, marking an alarming milestone in the climate crisis. This level of warming brings the world closer to surpassing the critical 1.5°C threshold set by the 2015 Paris Agreement, which around 200 nations had agreed was essential to prevent the most catastrophic effects of climate change.
Samantha Burgess, Deputy Director of Copernicus Climate, warned, “We are now teetering on the edge of surpassing the 1.5°C threshold,” emphasizing the urgent need for global action to reduce emissions and mitigate the devastating consequences of further warming. Despite the 2015 agreement’s aim to limit warming to 1.5°C, the world is far from meeting this goal, and the effects of rising temperatures are already becoming evident in extreme weather events, such as deadly wildfires, heatwaves, and flooding.
The data underscores the intensifying climate crisis and highlights the urgent need for nations to take immediate, substantial action to curb greenhouse gas emissions and transition to sustainable energy sources. The world is rapidly approaching a tipping point, and experts are calling for bold, global efforts to avoid irreversible environmental and societal damage.
Courtesy: South China Morning Post
References
- ^ Jump up to:a b PAGES 2k Consortium (2019). “Consistent multidecadal variability in global temperature reconstructions and simulations over the Common Era”. Nature Geoscience. 12 (8): 643–649. Bibcode:2019NatGe..12..643P. doi:10.1038/s41561-019-0400-0. ISSN 1752-0894. PMC 6675609. PMID 31372180.
- ^ “Global Annual Mean Surface Air Temperature Change”. NASA. Retrieved 23 February 2020.
- ^ Jump up to:a b Brohan, P.; Kennedy, J. J.; Harris, I.; Tett, S. F. B.; Jones, P. D. (2006). “Uncertainty estimates in regional and global observed temperature changes: a new dataset from 1850”. J. Geophys. Res. 111 (D12): D12106. Bibcode:2006JGRD..11112106B. CiteSeerX 10.1.1.184.4382. doi:10.1029/2005JD006548. S2CID 250615.
- ^ “Remote Sensing Systems”. www.remss.com. Retrieved 19 May 2022.
- ^ World of change: Global Temperatures Archived 2019-09-03 at the Wayback Machine The global mean surface air temperature for the period 1951-1980 was estimated to be 14 °C (57 °F), with an uncertainty of several tenths of a degree.
- ^ “Solar System Temperatures”. National Aeronautics and Space Administration (NASA). 4 September 2023. Archived from the original on 1 October 2023. (link to NASA graphic)
- ^ “Tracking breaches of the 1.5 °C global warming threshold”. Copernicus Programme. 15 June 2023. Archived from the original on 14 September 2023.
- ^ Jump up to:a b c d e f IPCC (2021). “Summary for Policymakers” (PDF). The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. ISBN 978-92-9169-158-6.
- ^ Jump up to:a b NOAA National Centers for Environmental Information, Monthly Global Climate Report for Annual 2022, published online January 2023, Retrieved on July 25, 2023 from https://www.ncei.noaa.gov/access/monitoring/monthly-report/global/202213.
- ^ Jump up to:a b IPCC, 2021: Annex VII: Glossary [Matthews, J.B.R., V. Möller, R. van Diemen, J.S. Fuglestvedt, V. Masson-Delmotte, C. Méndez, S. Semenov, A. Reisinger (eds.)]. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 2215–2256, doi:10.1017/9781009157896.022.
- ^ IPCC (2018). “Summary for Policymakers” (PDF). Global Warming of 1.5 °C. An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. pp. 3–24.
- ^ “IPCC AR5 Chapter 2 page 193” (PDF). Archived (PDF) from the original on 21 November 2016. Retrieved 28 January 2016.
- ^ Houghton, ed. (2001). “Climate Change 2001: Working Group I: The Scientific Basis – Chapter 12: Detection of Climate Change and Attribution of Causes”. IPCC. Archived from the original on 11 July 2007. Retrieved 13 July 2007.
- ^ “Ch 6. Changes in the Climate System”. Advancing the Science of Climate Change. 2010. doi:10.17226/12782. ISBN 978-0-309-14588-6.
- ^ Swanson, K.L.; Sugihara, G.; Tsonis, A.A. (22 September 2009). “Long-term natural variability and 20th century climate change”. Proc. Natl. Acad. Sci. U.S.A. 106 (38): 16120–3. Bibcode:2009PNAS..10616120S. doi:10.1073/pnas.0908699106. PMC 2752544. PMID 19805268.
- ^ Jump up to:a b c d Gulev, S. K., P. W. Thorne, J. Ahn, F. J. Dentener, C. M. Domingues, S. Gerland, D. Gong, D. S. Kaufman, H. C. Nnamchi, J. Quaas, J. A. Rivera, S. Sathyendranath, S. L. Smith, B. Trewin, K. von Shuckmann, R. S. Vose, 2021, Changing State of the Climate System (Chapter 2) Archived 2 March 2022 at the Wayback Machine. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu and B. Zhou (eds.)]. Cambridge University Press. In Press.
- ^ IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Archived 2 March 2019 at the Wayback Machine [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp.
- ^ “GISS Surface Temperature Analysis (v4)”. NASA. Retrieved 12 January 2024.
- ^ Kennedy, John; Ramasamy, Selvaraju; Andrew, Robbie; Arico, Salvatore; Bishop, Erin; Braathen, Geir (2019). WMO statement on the State of the Global Climate in 2018. Geneva: Chairperson, Publications Board, World Meteorological Organization. p. 6. ISBN 978-92-63-11233-0. Archived from the original on 12 November 2019. Retrieved 24 November 2019.
- ^ “Summary for Policymakers”. Synthesis report of the IPCC Sixth Assessment Report (PDF). 2023. A1, A4.
- ^ State of the Global Climate 2021 (Report). World Meteorological Organization. 2022. p. 2. Archived from the original on 18 May 2022. Retrieved 23 April 2023.
- ^ Lindsey, Rebecca; Dahlman, Luann (28 June 2022). “Climate Change: Global Temperature”. climate.gov. National Oceanic and Atmospheric Administration. Archived from the original on 17 September 2022.
- ^ Davy, Richard; Esau, Igor; Chernokulsky, Alexander; Outten, Stephen; Zilitinkevich, Sergej (January 2017). “Diurnal asymmetry to the observed global warming”. International Journal of Climatology. 37 (1): 79–93. Bibcode:2017IJCli..37…79D. doi:10.1002/joc.4688.
- ^ Schneider, S.H., S. Semenov, A. Patwardhan, I. Burton, C.H.D. Magadza, M. Oppenheimer, A.B. Pittock, A. Rahman, J.B. Smith, A. Suarez and F. Yamin, 2007: Chapter 19: Assessing key vulnerabilities and the risk from climate change. Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, M.L. Parry, O.F. Canziani, J.P. Palutikof, P.J. van der Linden and C.E. Hanson, Eds., Cambridge University Press, Cambridge, UK, 779-810.
- ^ Joyce, Christopher (30 August 2018). “To Predict Effects Of Global Warming, Scientists Looked Back 20,000 Years”. NPR. Archived from the original on 29 December 2019. Retrieved 29 December 2019.
- ^ Overpeck, J.T. (20 August 2008), NOAA Paleoclimatology Global Warming – The Story: Proxy Data, NOAA Paleoclimatology Program – NCDC Paleoclimatology Branch, archived from the original on 3 February 2017, retrieved 20 November 2012
- ^ The 20th century was the hottest in nearly 2,000 years, studies show Archived 25 July 2019 at the Wayback Machine, 25 July 2019
- ^ Nicholls, R.J., P.P. Wong, V.R. Burkett, J.O. Codignotto, J.E. Hay, R.F. McLean, S. Ragoonaden and C.D. Woodroffe, 2007: Chapter 6: Coastal systems and low-lying areas. Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, M.L. Parry, O.F. Canziani, J.P. Palutikof, P.J. van der Linden and C.E. Hanson, Eds., Cambridge University Press, Cambridge, UK, 315-356.
- ^ Oppenheimer, M., B.C. Glavovic , J. Hinkel, R. van de Wal, A.K. Magnan, A. Abd-Elgawad, R. Cai, M. Cifuentes-Jara, R.M. DeConto, T. Ghosh, J. Hay, F. Isla, B. Marzeion, B. Meyssignac, and Z. Sebesvari, 2019: Chapter 4: Sea Level Rise and Implications for Low-Lying Islands, Coasts and Communities. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate [H.-O. Pörtner, D.C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, N.M. Weyer (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, pp. 321–445. doi:10.1017/9781009157964.006.
- ^ Allen, M.R., O.P. Dube, W. Solecki, F. Aragón-Durand, W. Cramer, S. Humphreys, M. Kainuma, J. Kala, N. Mahowald, Y. Mulugetta, R. Perez, M.Wairiu, and K. Zickfeld, 2018: Chapter 1: Framing and Context. In: Global Warming of 1.5 °C. An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, pp. 49-92. doi:10.1017/9781009157940.003.
- ^ “What Are “Proxy” Data?”. NCDC.NOAA.gov. National Climatic Data Center, later called the National Centers for Environmental Information, part of the National Oceanic and Atmospheric Administration. 2014. Archived from the original on 10 October 2014.
- ^ “GCOS – Deutscher Wetterdienst – CLIMAT Availability”. gcos.dwd.de. Retrieved 12 May 2022.
- ^ Guide to the Global Observing System (PDF). WMO. 2007. ISBN 978-9263134882.
- ^ “Global Temperature Report: January 2019” (PDF). UAH.
- ^ “RSS / MSU and AMSU Data / Description”. Archived from the original on 23 November 2012. Retrieved 26 February 2011.
- ^ “Archived copy” (PDF). Archived from the original (PDF) on 14 March 2011. Retrieved 4 March 2011.
- ^ “Index of CCSP”.
- ^ “Temperature Trends in the Lower Atmosphere – Understanding and Reconciling Differences” (PDF). Archived (PDF) from the original on 4 March 2016. Retrieved 29 January 2016.
- ^ “GHCN-Monthly Version 2”. NOAA. Retrieved 13 July 2007.
- ^ “NCDC State of the Climate Global Analysis, April 2010”. Archived from the original on 16 June 2010. Retrieved 15 June 2010.
- ^ “Global Surface Temperature Anomalies”. National Climatic Data Center. Retrieved 16 June 2010.
- ^ CMB and Crouch, J. (17 September 2012). “Global Surface Temperature Anomalies: Background Information – FAQ 1”. NOAA NCDC.
- ^ Hansen, J.E. (20 November 2012). “Data.GISS: GISS Surface Temperature Analysis (GISTEMP)”. New York, NY, USA: NASA GISS.. Website curator: Schmunk, R.B.
- ^ Jump up to:a b Jones PD, New M, Parker DE, Martin S, Rigor IG (1999). “Surface air temperature and its changes over the past 150 years”. Reviews of Geophysics. 37 (2): 173–199. Bibcode:1999RvGeo..37..173J. doi:10.1029/1999RG900002.
- ^ “Data.GISS: GISTEMP — the Elusive Absolute Surface Air Temperature”.
- ^ “NOAA National Weather Service Cooperative Observer Program: Proper Siting”. Archived from the original on 5 July 2007. Retrieved 12 July 2007.
- ^ Trends in the Lower Atmosphere: Steps for Understanding and Reconciling Differences. Archived 3 February 2007 at the Wayback Machine Thomas R. Karl, Susan J. Hassol, Christopher D. Miller, and William L. Murray, editors, 2006. A Report by the Climate Change Science Program and the Subcommittee on Global Change Research, Washington, DC.
- ^ Peterson, Thomas C. (August 2006). “Examination of potential biases in air temperature caused by poor station locations”. Bull. Amer. Meteor. Soc. 87 (8): 1073–89. Bibcode:2006BAMS…87.1073P. doi:10.1175/BAMS-87-8-1073 (inactive 2 December 2024). S2CID 122809790.
- ^ Hausfather, Zeke; Menne, Matthew J.; Williams, Claude N.; Masters, Troy; Broberg, Ronald; Jones, David (30 January 2013). “Quantifying the effect of urbanization on U.S. Historical Climatology Network temperature records”. Journal of Geophysical Research. 118 (2): 481–494. Bibcode:2013JGRD..118..481H. doi:10.1029/2012JD018509.
- ^ “Mean Monthly Temperature Records Across the Globe / Timeseries of Global Land and Ocean Areas at Record Levels for October from 1951-2023”. NCEI.NOAA.gov. National Centers for Environmental Information (NCEI) of the National Oceanic and Atmospheric Administration (NOAA). November 2023. Archived from the original on 16 November 2023. (change “202310” in URL to see years other than 2023, and months other than 10=October)
- ^ Jump up to:a b World Meteorological Organization (2021). “The State of the Global Climate 2020”. library.wmo.int. Retrieved 17 January 2024.
- ^ Poynting, Mark; Rivault, Erwan (9 January 2023). “2023 confirmed as world’s hottest year on record”. BBC. Retrieved 17 January 2024.
- ^ “Scientists confirm 2023 was hottest year on record, 1.48 °C warmer than pre-industrial level”. Asia News Network. 10 January 2024. Retrieved 17 January 2024.
- ^ “2016: one of the warmest two years on record” (Press release). Met Office of the United Kingodom. 18 January 2017. Retrieved 20 January 2017.
- ^ “Climate change: Data shows 2016 likely to be warmest year yet”. BBC News Online. 18 January 2017. Retrieved 19 January 2017.
- ^ Jump up to:a b Potter, Sean; Cabbage, Michael; McCarthy, Leslie (19 January 2017). “NASA, NOAA Data Show 2016 Warmest Year on Record Globally” (Press release). NASA. Retrieved 20 January 2017.
- ^ Brumfiel, Geoff (18 January 2017). “U.S. Report Confirms 2016 Was The Hottest Year On Record”. NPR. Retrieved 20 January 2017.
- ^ Schmidt, Gavin (22 January 2015). “Thoughts on 2014 and ongoing temperature trends”. RealClimate. Retrieved 4 September 2015.
- ^ “2017 was second hottest year on record, after sizzling 2016 – report”. Reuters. 4 January 2018. Archived from the original on 4 January 2018.
- ^ “Global Climate Report – Annual 2020”. NOAA. Retrieved 14 January 2021.
- ^ “Data.GISS: GISS Surface Temperature Analysis (GISTEMP v4)”. data.giss.nasa.gov. Retrieved 17 March 2022.
- ^ “NOAA National Climatic Data Center, State of the Climate: Global Analysis for Annual 2014”. NOAA. Retrieved 21 January 2015.
- ^ Jump up to:a b “Joint-statement on climate change by leaders of 18 scientific organizations” (PDF). Washington DC, USA: American Association for the Advancement of Science. 21 October 2009. Archived from the original (PDF) on 6 August 2013. Joint-statement by leaders of 18 scientific organizations: American Association for the Advancement of Science, American Chemical Society, American Geophysical Union, American Institute of Biological Sciences, American Meteorological Society, American Society of Agronomy, American Society of Plant Biologists, American Statistical Association, Association of Ecosystem Research Centers, Botanical Society of America, Crop Science Society of America, Ecological Society of America, Natural Science Collections, Alliance Organization of Biological Field Stations, Society for Industrial and Applied Mathematics, Society of Systematic Biologists, Soil Science Society of America, University Corporation for Atmospheric Research
- ^ Walsh, J.; et al., Figure 6: Short-term Variations Versus Long-term Trend, in: D. Is the global temperature still increasing? Isn’t there recent evidence that it is actually 1 cooling?, in: Appendix I: NCA Climate Science – Addressing Commonly Asked Questions from A to Z (PDF), in NCADAC 2013 p. 1065 Archived 19 January 2022 at the Wayback Machine
- ^ “Understanding and Responding to Climate Change – Highlights of National Academies Reports” (PDF). United States National Academies. 2005. Archived from the original (PDF) on 11 June 2007. Retrieved 13 July 2007.
- ^ Jump up to:a b c d “Cooling the Warming Debate: Major New Analysis Confirms That Global Warming Is Real”. Science Daily. 21 October 2011. Retrieved 22 October 2011.
- ^ see also: PBS (10 January 2007). “Interviews – James Hansen: Hot Politics: FRONTLINE: PBS”. PBS.. “(…) The 1990s is the real appearance of the science skeptics. How much did they come after you? I actually don’t like the word “skeptics” for them; I think it’s better to call them “contrarians”, because skepticism is part of science; all scientists are skeptics (…)”
- ^ Ian Sample (20 October 2011). “Global warming study finds no grounds for climate sceptics’ concerns”. The Guardian. Retrieved 22 October 2011.
- ^ Richard Black (21 October 2011). “Global warming ‘confirmed’ by independent study”. BBC News. Retrieved 21 October 2011.
- ^ “Climate change: The heat is on”. The Economist. 22 October 2011. Retrieved 22 October 2011.
- ^ e.g., see Carter, B. (9 April 2006). “There IS a problem with global warming… it stopped in 1998”. The Daily Telegraph.
- ^ Jump up to:a b c Edited quote from public-domain source: Scott, M. (31 December 2009). “Short-term Cooling on a Warming Planet, p.1”. ClimateWatch Magazine. NOAA. Introduction. Archived from the original on 19 February 2013. Retrieved 22 September 2012.
- ^ Jump up to:a b Met Office, Fitzroy Road (14 September 2009). “Global warming set to continue”. UK Met Office. Archived from the original on 27 October 2012.
- ^ Albritton, D.L.; et al. (2001). Houghton, J.T.; et al. (eds.). Box 1: What drives changes in climate? in: Technical Summary, in: Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
- ^ Jump up to:a b Edited quote from public-domain source: Scott, M. (31 December 2009). “Short-term Cooling on a Warming Planet, p.3”. ClimateWatch Magazine. NOAA. Deciphering Natural Variability.
- ^ Eyring, V., N. P. Gillett, K. M. Achuta Rao, R. Barimalala, M. Barreiro Parrillo, N. Bellouin, C. Cassou, P. J. Durack, Y. Kosaka, S. McGregor, S. Min, O. Morgenstern, Y. Sun, 2021, Human Influence on the Climate System (chapter 3). In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change Archived 10 April 2022 at the Wayback Machine [Masson-Delmotte, V., P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu and B. Zhou (eds.)]. Cambridge University Press. In Press.
- ^ Hawkins, Ed (21 July 2019). “#ShowYourStripes / Temperature changes around the world (1901-2018)”. Climate Lab Book. Archived from the original on 2 August 2019. (Direct link to image).
- ^ Amos, Jonathan (21 June 2019). “The chart that defines our warming world / Is this the simplest way to show what is meant by global warming? The chart below organises all the countries of the world by region, time and temperature. The trend is unmistakeable”. BBC. Archived from the original on 29 June 2019. (Link to png image)
- ^ Hawkins, Ed (4 December 2018). “2018 visualisation update / Warming stripes for 1850-2018 using the WMO annual global temperature dataset”. Climate Lab Book. Archived from the original on 17 April 2019.
LICENSE / Creative Commons License / These blog pages & images are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
(Direct link to image). - ^ Arias, P.A., N. Bellouin, E. Coppola, R.G. Jones, G. Krinner, J. Marotzke, V. Naik, M.D. Palmer, G.-K. Plattner, J. Rogelj, M. Rojas, J. Sillmann, T. Storelvmo, P.W. Thorne, B. Trewin, K. Achuta Rao, B. Adhikary, R.P. Allan, K. Armour, G. Bala, R. Barimalala, S. Berger, J.G. Canadell, C. Cassou, A. Cherchi, W. Collins, W.D. Collins, S.L. Connors, S. Corti, F. Cruz, F.J. Dentener, C. Dereczynski, A. Di Luca, A. Diongue Niang, F.J. Doblas-Reyes, A. Dosio, H. Douville, F. Engelbrecht, et al., 2021: Technical Summary. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change Archived 21 July 2022 at the Wayback Machine [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press. In Press.
- ^ J.T. Houghton; et al., eds. (2001). “Figure 1: Variations of the Earth’s surface temperature over the last 140 years and the last millennium.”. Summary for policy makers. IPCC Third Assessment Report – Climate Change 2001 Contribution of Working Group I. Intergovernmental Panel on Climate Change. Archived from the original on 13 November 2016. Retrieved 12 May 2011.
- ^ J.T. Houghton; et al., eds. (2001). Chapter 2. Observed climate variability and change. Climate Change 2001: Working Group I The Scientific Basis. Intergovernmental Panel on Climate Change. Archived from the original on 9 March 2016. Retrieved 12 May 2011.
- ^ Jump up to:a b c National Research Council (U.S.). Committee on Surface Temperature Reconstructions for the Last 2,000 Years Surface temperature reconstructions for the last 2,000 years (2006), National Academies Press ISBN 978-0-309-10225-4
- ^ Mann, Michael E.; Zhang, Zhihua; Hughes, Malcolm K.; Bradley, Raymond S.; Miller, Sonya K.; Rutherford, Scott; Ni, Fenbiao (2008). “Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia”. Proceedings of the National Academy of Sciences. 105 (36): 13252–13257. Bibcode:2008PNAS..10513252M. doi:10.1073/pnas.0805721105. PMC 2527990. PMID 18765811.
- ^ “The Climate Epochs That Weren’t”. State of the Planet. 24 July 2019. Retrieved 27 November 2021.
- ^ O.Muszkat, The outline of the problems and methods used for research of the history of the climate in the Middle Ages, (in polish), Przemyśl 2014, ISSN 1232-7263
- ^ The Fall of the Egyptian Old Kingdom Hassan, Fekri BBC June 2001
- ^ Team, NCEI GIS (14 December 2018). “Paleoclimatology Data”. National Centers for Environmental Information (NCEI). Retrieved 12 August 2024.
- ^ Jump up to:a b Alley, R. B. (15 February 2000). “Ice-core evidence of abrupt climate changes”. Proceedings of the National Academy of Sciences. 97 (4): 1331–1334. Bibcode:2000PNAS…97.1331A. doi:10.1073/pnas.97.4.1331. ISSN 0027-8424. PMC 34297. PMID 10677460.
- ^ Severinghaus, Jeffrey P.; Sowers, Todd; Brook, Edward J.; Alley, Richard B.; Bender, Michael L. (January 1998). “Timing of abrupt climate change at the end of the Younger Dryas interval from thermally fractionated gases in polar ice”. Nature. 391 (6663): 141–146. Bibcode:1998Natur.391..141S. doi:10.1038/34346. ISSN 0028-0836. S2CID 4426618.
- ^ Webb, Robert S.; Clark, Peter U.; Keigwin, Lloyd D. (1999), “Preface”, Mechanisms of Global Climate Change at Millennial Time Scales, vol. 112, Washington, D. C.: American Geophysical Union, pp. vii–viii, Bibcode:1999GMS…112D…7W, doi:10.1029/gm112p0vii (inactive 11 November 2024), ISBN 0-87590-095-X, retrieved 18 April 2021
- ^ Chappellaz, Jérôme; Brook, Ed; Blunier, Thomas; Malaizé, Bruno (30 November 1997). “CH4and δ18O of O2records from Antarctic and Greenland ice: A clue for stratigraphic disturbance in the bottom part of the Greenland Ice Core Project and the Greenland Ice Sheet Project 2 ice cores”. Journal of Geophysical Research: Oceans. 102 (C12): 26547–26557. Bibcode:1997JGR…10226547C. doi:10.1029/97jc00164. ISSN 0148-0227.
- ^ Higgins, John A.; Kurbatov, Andrei V.; Spaulding, Nicole E.; Brook, Ed; Introne, Douglas S.; Chimiak, Laura M.; Yan, Yuzhen; Mayewski, Paul A.; Bender, Michael L. (11 May 2015). “Atmospheric composition 1 million years ago from blue ice in the Allan Hills, Antarctica”. Proceedings of the National Academy of Sciences. 112 (22): 6887–6891. Bibcode:2015PNAS..112.6887H. doi:10.1073/pnas.1420232112. ISSN 0027-8424. PMC 4460481. PMID 25964367.
- ^ Brook, Edward J.; Buizert, Christo (June 2018). “Antarctic and global climate history viewed from ice cores”. Nature. 558 (7709): 200–208. Bibcode:2018Natur.558..200B. doi:10.1038/s41586-018-0172-5. ISSN 0028-0836. PMID 29899479. S2CID 49191229.
- ^ Cuffey, Kurt M.; Clow, Gary D.; Steig, Eric J.; Buizert, Christo; Fudge, T. J.; Koutnik, Michelle; Waddington, Edwin D.; Alley, Richard B.; Severinghaus, Jeffrey P. (28 November 2016). “Deglacial temperature history of West Antarctica”. Proceedings of the National Academy of Sciences. 113 (50): 14249–14254. Bibcode:2016PNAS..11314249C. doi:10.1073/pnas.1609132113. ISSN 0027-8424. PMC 5167188. PMID 27911783.
- ^ Jump up to:a b Thompson, L. G. (2004), “High Altitude, Mid- and Low-Latitude Ice Core Records: Implications for Our Future”, Earth Paleoenvironments: Records Preserved in Mid- and Low-Latitude Glaciers, Developments in Paleoenvironmental Research, vol. 9, Dordrecht: Kluwer Academic Publishers, pp. 3–15, doi:10.1007/1-4020-2146-1_1, ISBN 1-4020-2145-3
- ^ Thompson, L. G.; Mosley-Thompson, E.; Davis, M. E.; Lin, P. -N.; Henderson, K. A.; Cole-Dai, J.; Bolzan, J. F.; Liu, K. -b. (7 July 1995). “Late Glacial Stage and Holocene Tropical Ice Core Records from Huascaran, Peru”. Science. 269 (5220): 46–50. Bibcode:1995Sci…269…46T. doi:10.1126/science.269.5220.46. ISSN 0036-8075. PMID 17787701. S2CID 25940751.
- ^ Lisiecki, Lorraine E.; Raymo, Maureen E. (January 2005). “A Pliocene-Pleistocene stack of 57 globally distributed benthic d18O records” (PDF). Paleoceanography. 20 (1): PA1003. Bibcode:2005PalOc..20.1003L. doi:10.1029/2004PA001071. hdl:2027.42/149224. S2CID12788441.
- Supplement: Lisiecki, L. E.; Raymo, M. E. (2005). “Pliocene-Pleistocene stack of globally distributed benthic stable oxygen isotope records”. Pangaea. doi:10.1594/PANGAEA.704257.
- ^ Petit, J. R.; Jouzel, J.; Raynaud, D.; Barkov, N. I.; Barnola, J. M.; Basile, I.; Bender, M.; Chappellaz, J.; Davis, J.; Delaygue, G.; Delmotte, M.; Kotlyakov, V. M.; Legrand, M.; Lipenkov, V.; Lorius, C.; Pépin, L.; Ritz, C.; Saltzman, E.; Stievenard, M. (1999). “Climate and Atmospheric History of the Past 420,000 years from the Vostok Ice Core, Antarctica”. Nature. 399 (6735): 429–436. Bibcode:1999Natur.399..429P. doi:10.1038/20859. S2CID 204993577.